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Stopbands of the First-Order Bragg Interaction
in a Parallel-Plate Waveguide Having
Multiperiodic Wall Corrugations

OMAR RAFIK ASFAR aNxp ALI HASAN NAYFEH

Abstract—The stopbands of the first-order Bragg interaction in a
parallel-plate waveguide having multiperiodic wall undulations are investi-
gated via the perturbation method of mulitiple scales. For a structure
having two periods, the first-order Bragg interaction involves two as well as
three coupled modes. Transition curves separating passbands from stop-
bands are found for all possible interactions. The effect of the multiple
periodicity in the structure is found to be an increased band-width for the
attenuation band as well as considerable attenuation throughout the band
owing to the increased number of interactions. This is useful for the design
of multichannel narrow-band microwave filters. The analysis is carried out
for the first three dominant modes of the structure.

I. INTRODUCTION

N A REVIEW PAPER on wave propagation in peri-

odic structures, Elachi [1] pointed out the need for
investigating the stopbands of multiperiodic structures. In
this paper, a first step in this direction is undertaken by
studying the case of a doubly periodic structure for the
stopbands of the first-order Bragg interaction. For this
purpose we consider the propagation of TM modes in a
parallel-plate waveguide having perfectly conducting walls
that are perturbed in the direction of propagation accord-
ing to the following wall distortion functions:

g/(z)=3¥sink;z, at the lower plate §))

g.(z)=8asin(k,z+86),  at the upper plate (2)
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where k, and k, describe the wavenumbers of the undula-
tions of the lower and upper plates, respectively. Equa-
tions (1) and (2) describe wall undulations per unit of the
separation d of the two plates so that § is a dimensionless
small parameter, much smaller than unity, and small
enough for the Rayleigh hypothesis to hold [2]. The
parameter a is a constant and 6 is a constant phase angle.

The problem of a parallel-plate waveguide with one
periodicity in the wall distortion function was treated by
Nayfeh and Asfar [3], where the analysis was done for the
first-order interaction of two propagating modes coupled
by the wall perturbation. The second-order interaction of
two modes in a periodic circular guide was analyzed by
Asfar and Nayfeh [4]. For unbounded media, Chu and
Tamir [5] analyzed mode coupling for the mth order
Bragg interaction, while Jaggard and Elachi [6] considered
the case of multiharmonic media where the different order
Bragg interactions may add destructively to cause the
disappearance of a stopband.

In the cases cited above [3]-[6], each Bragg interaction
corresponds to a stopband except for the case of multi-
harmonic media where additional stopbands may appear
[6]. It is the purpose of this paper to find the stopbands
that appear in the case of bounded media having boundary
perturbations. As discussed in the sequel, there are two
sets of stopbands in a structure having two periods: the
first corresponds to the coupling of two modes, and the
second corresponds to the coupling of three modes. The
analysis is made via the method of multiple scales [7]-[8].
The same approach was used by Nayfeh and Kandil [9] to
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derive interaction equations for three modes in a circular
acoustic duct.

II. FORMULATION

The fields for a TM mode are derivable from a z-
directed vector potential for waves propagating in the
z-direction. We make all coordinates dimensionless by
using the average separation of the plates 4 and the speed
of light in the medium ¢ =(ue) ™'/ as reference quantities.
Assuming a harmonic time variation of the form
exp(—iwt), we obtain the following Helmholtz equation
for the z-directed wave function

V3y+ k2\p =0 3)
where
62
Vi= — 4+ —
9x? az

and k is the dimensionless wavenumber for unbounded
media. The boundary conditions on i are the vanishing of
the tangential component of the electric field on the
plates, which in terms of the potential function ¢ give

2#’
)4/— —8k,cos(k;z) =~ 3%

at x=38sin(k;z) (4)

2
(—a——+k2) = —8ak,cos(k, z+6’)a 8 ,

at x=1+dasin(k,z+8). (5)

III. SoruTtioN USING THE METHOD OF MULTIPLE
SCALES

To apply the method of multiple scales to this problem,
we introduce the scales z,=z and z, =8z, where z; char-
acterizes variations over distances of the order of a wave-
length and z, characterizes the slow amplitude and phase
modulations over distances large compared with the wave-
length. Thus we transform the derivatives with respect to z
as follows:

0 ] ]
-é-z— = 370 +8'52—1 (6)
82 62 82
—_ 7
9z2 922 9200z, @

Then, we seek a perturbation expansion in powers of § as
follows:

\[/(x,z)=¢0(x, Zo,zl)+8l[/1(x,zo,21). (8)

Since we are interested in the first-order Bragg interaction,
we carry the expansion to 0(8) only.

We substitute (6)-(8) into (3)-(5), expand ¢ at the
boundaries in Taylor series around x=0 and 1, equate
coefficients of equal powers of § on both sides of every
equation, and obtain the following,
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3y . %Y,
+— +k? 9
ax? 3z} Yo= ©)
Y%=0, atx=0and]l (10
0(%)
82"/1 82'4’1 2 624’0
e e T e v
az 2 9’ Y
—k,cos(k;zg)m—— 3% %
3%y,
g M0 (12)
9?2 . 02 Y,
+k? |y, = — k,zo+0)| — +Kk* | -2
(azo )\// asin(k,z, )( 022 +k ) o
—ak,cos(k,zy+0)
Ny,
" 8xdz, 2 0240z, > atx=1. (I3)

We seek a solution of (9) and (10) in the form of a
linear combination of all possible modes (Rayleigh’s hy-
pothesis); that is,

§ A, (z,)sin(nwx)exp(ik,z,)

n=-—o0

(14)

where n is an integer, k2 =k —n%z?, and the 4, are not
determined at this level of approximation; they are de-
termined from the solvability conditions of the first-order
problem [8]. Substituting (14) into (11)-(13), we obtain

02 92
‘h ‘l;l +k2y, =-2i Z k,A,sin(nrx)
a‘ZO a n=—o0
-exp(ik,zo) (15)
Losi)y=2i 3 (ury |
222 ,—21n=_w(n77
'An{exp[i(kn +k1)20]

~explilk, ~k)zo)} =5k, 3 nak, A, {expli(k,

n=—co

+k))zo | +exp[i(k, —k;)zg] }

8
82

A {expli(k, +k,)zo+i6]

(16)
kz)tlfl——m Z (-D(nr)

n=—oo

l o0
—expli(k,—k,)zo—i0]} — 5 ik, > (=D'nwk, A,

n=—0o0

{expli(k, +k,)zo +if]

+exp[i(k,—k,)zo—i0]}. @17)
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Since the homogeneous parts of (15)~(17) are the same as
(9) and (10), and since the latter equations have a nontriv-
ial solution, the inhomogeneous equations (15)—(17) will
have a solution if, and only if, solvability (integrability)
conditions are satisfied [8]. To demonstrate this point, we
consider the particular solution of (15)—(17) when 4, =0;
that is

Y x § {[anISin(an)]_lexP[i(kn"'kl)zo]

n=—o0

+ [ nzuSin(Bnu)] ‘lexP[ i(k, +ku)zo] + ['Ynzlsin(Ynl)] -
'exp[i(kn —kI)ZO] + [ erzuSin(Ynu)] -

-exp[ i(k, —k,)z,]} (18)

where
Bi=k*—(k,+k,)*  B2=k>—(k,+k,)’ (19)
Y=k = (k,—k,)’  vi=k*-(k,~k,)’. (19b)

In analyzing the particular solution, we need to dis-
tinguish between two cases. First, all the 8,;, B,., Vs Yuu
are away from ma, where m is an integer. In this case,
there exists a solution to the inhomogeneous equations
(15)-(17) with (18) being its particular solution. Second,
one or more of the B’s and the y’s is equal to ma which
yields resonance frequencies defined by

k =(k,xk, ) +m?n?. (20)

In this case, y; is unbounded and hence the inhomoge-
neous equations (15)—(17) do not have a solution. When
one or more of the quantities 8 —mw and y—ma is 0(8),
¥, becomes 0(8~') and the supposedly small correction
term 8y, becomes the same order as .

To determine a uniform solution for the resonant inter-
actions, we must have 4,70 and we must remove the
resonant terms from the particular solution. To accom-
plish this we need to distinguish the following three possi-
ble types of interaction.

(i) The case of two modes coupled by either one of the
wall corrugations in which case (20) is equivalent to the
resonance conditions

Ky =knFk,+80,. (21)

(ii) The case of three modes coupled by either one of
the walls, that is, the resonance conditions are given by

k; ,=k,¥k,+80, k, =k, Fk,+80,. (22)

(iii) The case of three modes coupled by both walls
with the resonance conditions

k,=k,¥k,,+d80, (23)

The parameters o, and o, are called detuning parameters.
They measure the nearness of the resonances. In general,
they are different because they depend not only on the
wavenumbers of the modes but also on the wall undula-
tions. The minus sign in (21)-(23) corresponds to the
interaction of modes traveling in the same direction
whereas the plus sign corresponds to the interaction of

k,=k,Fk,+80,.

1189

oppositely directed modes. It can be shown that the
results of the analysis for the latter can be obtained from
those of the former simply by changing the signs of the
wavenumbers of the backward modes.

Analysis for case (i) above follows the same lines of an
earlier investigation [3] and is therefore omitted from the
present analysis, only the pertinent results will be stated.
Case (ii) is found to lead to a passband interaction only;
that is, an interaction whereby the modes exchange their
energies without attenuation. This is ‘not of any impor-
tance in our case. Case (iii), however, is the most interest-
ing since unlike case (i) a stopband occurs even for three
modes traveling in the same direction. This is the subject
of our concern in the next section.

IV. StoPBANDS OF THE THREE-MODE INTERACTION

To find the solvability condition in this case we con-
sider (23) with the minus signs; that is

kntk=k,+80, k,+k,=k,<+80,  (24)

so that the terms leading to resonance in (16) and (17)
may be expressed as

exp[i(k,,+k,)zo| =exp[i(k,zo+0,2,)]  (252)
exp[ i(k,+k,)zo] =exp| i(kpzo+azz,)] (25b)
exp[ i(k,—k,)zo| =exp[i(k,,zo—0,2)]  (25¢)
exp|i(k,—k,)zo | =exp[i(k,zo—0y2;)].  (25d)

Next, we seek a particular solution for ¢, in the form

U= X Ju(x, z;)exp(ik,z,).

n=m,p,s
Substituting (26) into (15), we obtain
32
O 2
ax?

(26)

2f = —2id,k, sin(nmx), forn=m,p,s.

@n

Multiplying both sides of (27) by sin(nwx) and integrating
by parts from x=0 to x=1, we obtain
na| £,(0)—-cos(nm)f,(1)]= —id,k,, forn=m,p,s.

(28)
The constants £,(0) and f,(1) are found from (16) and (17)
upon substitution of (26). Thus (28) yields the following
system of equations for the amplitudes of the interacting
modes:

, P ‘ .
A, = EFn/T(kz ~k,k,)exp(—io;z)4,  (29)
A, = 2pk 2 (k* —k,k, )exp(io,z,)A,,

+ — 2pk cos( pm)cos(sm)
-(k —k,k,)exp(ioyz, +i0)A, (30)

‘= 2k cos(pw)cos(sw)(k’ k)

-exp(—ioyz; —i0)4,. 31)
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We note from (29)-(31) that the pth mode is directly

coupled with the mth and sth modes, while the latter

modes are indirectly coupled via the pth mode.
Equations (29)-(31) admit solutions of the form

A, =a,exp[i(A=0))z,] (320)
A, =a,exp(ilz;) (32b)
A, =a.exp[i(A—a,)z,] (32¢)

provided that
N~ (o, +0,)N

(k2 _kmkp)2 —a? (k2 _kpks)2

% gk ek, |
2
o, 2 2 o0 2 2_
+4k,,,k,,(k knk,) + 4k,,ks(k k,k,) =0.

(33)

If all the roots of (33) are real, there is a passband and the
modes exchange their energies in accordance with energy
conservation [3]; otherwise, there is a stopband. The
significance of equation (33) is best discussed in connec-
tion with a numerical example.

V. DESIGN OF A MULTICHANNEL NARROW-BAND
FILTER

We consider a waveguide section whose length is large
compared with the plate separation d. For d=3 cm, the
first-, second-, and third-dominant waveguide modes hav-
ing the wavenumbers k,, k,, and k;, are cutoff at the
frequencies 5, 10, and 15 GHz, respectively. In order to
determine transition curves separating stopbands from
passbands, we first determine the transition curves due to
the case of two-mode interactions. The equation determin-
ing the characteristic exponent A in this case can be
abstracted from the interaction equations (29)-(31) by
letting A,=0 in one case then 4,,=0 in the other case.
The result would be
5 11/2
(k*—k,.k,)

(34a)
Kk,

2
o, x|o/+

[T

A=

in the case of coupling of the modes p and m and

1

o?(k*—k,k,
A=51e, -

2 1/2
+| a2+ 34b
2 k k
pvs

for the coupling of the modes p and s. It is clear from
these relations that when the modes are opposite then A is
complex for a range of values of o, and o,. This takes
place when k,= —k,, or —k; that is, when an incident
mode is reflected by the corrugations. In the present
example there are two stopband interactions above each
of the cutoff frequencies as shown in Fig. 1. The transition
curve (solid line) occurring at a higher frequency in each
case is the one corresponding to the interaction due to the
larger wall wavenumber., The stopband lies to the left of
the transition curves in each case and is bounded at the
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Fig. 1. Transition curves for two interacting modes. Shaded regions
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Fig. 2. Transition curves and stopbands for three interacting modes.
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Fig. 3. Stopbands for the first-order Bragg interaction.

cutoff frequency. Inspection of the detuning shows that
the interaction is strongest inside the stopband at frequen-
cies where o, or 0,=0 to the left of the transition curve.
Results are shown for corrugation periods A;~8.66 cm on
the lower wall and A ,~3.1 cm on the upper wall.

As for the three mode interactions, the present choice of
k, and k, leads to two interactions out of the many
possibilities that may be anticipated when either k, or k,
or k; acts as the intermediate mode wavenumber that is
directly coupled to the other two. The first of these is the
interaction of k,, —k,, and k, with k, being the inter-
mediate mode wavenumber above 10 GHz. The second
interaction is more important and occurs above 15 GHz
for an interaction of k,, k,, and k; with k, being the
intermediate mode wavenumber. The stopbands of the
three-mode interaction are shown in Fig. 2 as the shaded
regions bounded by the cutoff frequency and the corre-
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Fig. 4. Power reflection coefficient in the stopband above 15 GHz.
Corrugation length 30 cm, §=0.1, and a=1.

sponding transition curve. By combining the transition
curves of the two types of interaction, we obtain the
stopbands shown in Fig. 3.

The stopband above 15 GHz shows how the three-mode
interaction, enhanced by the multiperiodicity of the struc-
ture, produces an attenuation band that is wider than that
of the two-mode interaction. Moreover, there is a region
where these two types of interaction overlap. In this
region the attenuation is a maximum as seen in Fig. 4 [10]
for a filter section 30 cm in length. This figure shows the
behavior of the power reflection coefficient within the
stopband above 15 GHz. One can identify two transitions
in this diagram. The first corresponds to the transition
curve of the two-mode interaction via the upper wall
perturbation and carries with it a drop of about 35 per-
cent in attenuation. This drop is due to the fact that the
dispersion relation (33) always has a real root in the
stopband so that part of the energy is transferred without
attenuation. The second transition corresponds to the
transition curve of the three-mode interaction into the
passband.
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We also note that the bandwidth may be increased by
changing some of the parameters of the structure, such as
the strength of the perturbation on the upper wall relative
to that on the lower wall, or by decreasing the period of
the upper wall. As an example, if §=0.1 and a=2 then
the stopband extends approximately up to 17.5 GHz as
compared with 16.8 GHz for a=1.

In conclusion, one can say that the effect of multiple
periodicity is to produce a wide attenuation band that is
characterized by considerable attenuation in regions where
two-mode interactions coexist with three-mode interac-
tions. For these reasons multiperiodic waveguides seem to
be promising for narrow-band microwave filter appli-
cations.
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