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Stopbands of the First-Order Bragg Interaction
in a Parallel-Plate Waveguide Having

Multiperiodic Wall Corrugations

OMAR RAFIK ASFAR AND ALI HASA’N NAYFEH

Abstruct-llie stopbands of the ffrst-order Bragg interaction fn a

pamflel-plate waveguide having multiperiodfc waff undulations are investi-

gated via the perturbation method of multiple scales. For a strm%me

having two pertadsj the ffrst-order Bragg interaction fnvoh’es two as wefl as

three coupled mades. Transition curves separating passbands from stop-

bands are found for ttff possible interactions. The effect of the moftiple

periodieity in the. stmetum fsfmmdto bean increased band-width forthe

attenuation band as weff as considerable attenuation thugkut the band

Owfngtothefnmased number of fnteractiorts. This is =fuf for tbe design

of muftfchannd narrow-band microwave fflters. ‘l%e analysis is carried out

forthefirst three dmninantnmdesofthestnlctltre.

I. INTRODUCTION

1

N A REVIEW PAPER on wave propagation in peri-

odic structures, Elachi [1] pointed out the need for

investigating the stopbands of multiperiodic structures. In

this paper, a first step in this direction is undertaken by

studying the case of a doubly periodic stracture for the

stopbancls of the first-order Bragg interaction. For this

purpose we consider the propagation of TM modes in a

parallel-plate waveguide having perfectly conducting walls

that are perturbed in the direction of propagation accord-

ing to the following wall distortion functions:

g,(z) =8sink,z, at the lower plate (1)

gU(z)=8asin(kUz+ O), at the upper plate (2)
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where kl and k. describe the wavenumbers of the undula-

tions of the lower and upper plates, respectively. Equa-

tions (1) and (2) describe wall undulations per unit of the

separation d of the two plates so that d is a dimensionless

small parameter, much smaller than unity, and small

enough for the Rayleigh hypothesis to hold [2]. The

parameter a is a constant and O is a constant phase angle.

The problem of a parallel-plate waveguide with one

periodicity in the wall distortion function was treated by

Nayfeh and Asfar [3], where the analysis was done for the

first-order interaction of two propagating modes coupled

by the wall perturbation. The second-order interaction of

two modes in a periodic circular guide was analyzed by

Asfar and Nayfeh [4]. For unbounded media, Chu and

Tamir [5] analyzed mode coupling for the mth order

Bragg interaction, while Jaggard and Elachi [6] considered

the case of multiharmonic media where the different order

Bragg interactions may add destructively to cause the

disappearance of a stopband.

In the cases cited above [3]–[6], each Bragg interaction

corresponds to a stopband except for the case of multi-

harmonic media where additional stopbands may appear

[6]. It is the purpose of this paper to find the stopbrmds

that appear in the case of bounded media having boundary

perturbations. As discussed in the sequel, there are two

sets of stopbands in a structure having two periods: the

first eorrespcmds to the coupling of two modes, and the

second corresponds to the coupling of three modes. The

analysis is made via the method of multiple scales [7]–[8].

The same approach was used by Nayfeh and Kandil [9] to
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derive interaction equations for three modes in a circular

acoustic duct.

II. FORMULATION

The fields for a TM mode are derivable from a z-

directed vector potential for waves propagating in the

z-direction. We make all coordinates dimensionless by

using the average separation of the plates d and the speed
- 1/2 as reference quantities.of light in the medium c = (PC)

Assuming a harmonic time variation of the form

exp( – hot ), we obtain the following Helmholtz equation

for the z-directed wave function ~:

V2$+k2#=0 (3)

where

a2 + a2
V2=— —

ax2 az2

and k is the dimensionless wavenumber for unbounded

media. The boundary conditions on+ are the vanishing of

the tangential component of the electric field on the

plates, which in terms of the potential function + give

atx=c?sin(kp) (4)

()a2 a2~
— +k2 ~= –ikxkucos(kuz+~)m,
az2

atx=l+6asin(kUz +O). (5)

III. SOLUTION USING THE METHOD OF MULTIPLE
SCWES

To apply the method of multiple scales to this problem,

we introduce the scales ZO= z and z, = 13z, where Z. char-

acterizes variations over distances of the order of a wave-

length and Z1 characterizes the slow amplitude and phase

modulations over distances large compared with the wave-

length. Thus we transform the derivatives with respect to z

as follows:

a2
– –+28&.

_ az

az2 – az: o

(6)

(7)

Then, we seek a perturbation expansion in powers of 8 as

follows :

+(~jz)=+o(~> Z()> zl)+wl(~,zo, %). (8)

Since we are interested in the first-order Bragg interaction,

we carry the expansion to 0(8) only.

We substitute (6)–(8) into (3)– (5), expand ~ at the

boundaries in Taylor series around x= O and 1, equate

coefficients of equal powers of 8 on both sides of every

equation, and obtain the following.

o(1)

az~o + a2*o—— +k2$o=0
ax2 az;

(9)

+.=O, atx=O and 1 (lo)

0(8)

(11)
az~l + a2q1 a2*o

—+k2#1=–2—
ax2 az: azoazl

()

a2

()

a2 a~o
—+k2 $,=
az;

–sin(k,zo) — +k2 ~
az:

a2~o
– klcos(klzo) m

a2*o
–2—9

a.20aZ1
atx=O (12)

()

az

()

a2 a+.
—+k2 ~1= –asin(kUzo+8) —
az;

+k2 —
az; ax

– akwcos(ktizo + 0)

a2*o _2 a2*o.—
axazo a’

atx=l. (13)

We seek a solution of (9) and (10) in the form of a

linear combination of all possible modes (Rayleigh’s hy-

pothesis); that is,
w

4JO=x ~.(z,)sin(nmx)exp( iknzo) (14)

where n is an integer, k; = k2 –n2T2, and the An are not

determined at this level of approximation; they are de-

termined from the solvability conditions of the first-order

problem [8]. Substituting (14) into (1 1)–(13), we obtain

“ exp(ik.zo) (15)

.A.{exp[ i(kn +k~)zo]

– exp[ i(kn -L)ZOI } – ~i~,n=~m ~~L~n{exP[ X%

+kl)zo] +exp[i(k. –kl)zo]} (16)

.A.{exp[i(km +ku)zo +iO]

–exp[i(k~ –kU)zo –iO]}– ~iakU ~ (- l)%rkfiA~
~=—~

.{exp[i(k. +ku)zo +iO]

+exp[i(k~ –kU)zo –i@]}. (17)
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Since the homogeneous parts of (15)–(17) are the same as

(9) and (10), and since the latter equations have a nontriv-

ial solution, the inhomogeneous equations (15)–(17) will

have a solution if, and only if, solvability (integrability)

conditions are satisfied [8]. To demonstrate this point, we

consider the particular solution of (1 5)–(17) when A; = O;

that is

4’1~ i { [P:/sin(Bnl)l-’ exP[~(~n +h)zo]
~=—~

+ [P~.sin(P..)] -lexp[i(k; +ku)zo] + [y~@(ynl)]-l

“exp[i(k. –kl)zo] + [yfusin(y.u)]”

“exp[i(k. –ku)zo]} (18)

where

~;,=k’-(k.+kl)’ fl~u=k’-(k.+ku)’ (19a)

y:l=k’-(km-kl)’ y:u=k’–(k~–ku)’. (19b)

In analyzing the particular solution, we need to dis-
tinguish between two cases. First, all the @.l, ~nu, Y.D Y.”

are away from m W, where m is an integer. In this case,

there exists a solution to the inhomogeneous equations

(15)-(17) with (18) being its particular solution. Second,

one or more of the ~‘s and the y‘s is equal to mm which

yields resonance frequencies defined by

k2=(kn&k,, u)2+m2r2. (20)

In this case, ~1 is unbounded and hence the inhomoge-

neous equations (1 5)–(17) do not have a solution. When

one or more of the quantities ~ – mw and y – m r is 0(8),

+1 becomes 0(8-1, and the supposedly small correction

term 8+1 becomes the same order as +..

To determine a uniform solution for the resonant inter-

actions, we must have A; # O and we must remove the

resonant terms from the partictdar solution. To accom-

plish this we need to distinguish the following three possi-

ble types of interaction.

(i) The case of two modes coupled by either one of the

wall corrugations in which case (20) is equivalent to the

resonance conditions

kl, u=k~FkP+801. (21)

(ii) The case of three modes coupled by either one of

the walls, that is, the resonance conditions are given by

k ~,u=k~7kP+i3a1 kt, u=k$TkP+tloz. (22)

(iii) The case of three modes coupled by both walls

with the resonance conditions

kt=kp~k~+hl ku=kDTk. +8u2. (23)

oppositely directed modes. It can be shown that the

results of the analysis for the latter can be obtained from

those of the former simply by changing the signs of the

wavenumbers of the backward modes.

Analysis for case (i) above follows the same lines of an

earlier investigation [3] and is therefore omitted from the

present analysis, only the pertinent results will be stated,

Case (ii) is found to lead to a passband interaction only;

that is, an interaction whereby the modes exchange their

energies without attenuation. This is not of any impor-

tance in our case. Case (iii), however, is the most interest-

ing since unlike case (i) a stopbarid occurs even for tb.ree

modes traveling in the same direction. This is the subject

of our concern in the next section.

IV. STOPBANDS OF THE THREE-MODE INTERMXION

To find the solvability condition in this case we con-

sider (23) with the minus signs; that is

k~+kl=kP+8u1 k,+ku=kP+/la2 (24)

so that the terms leading to resonance in (16) and (17)

may be expressed as

exp[i(k~+kl)zO] =exp[i(kPzO+qzJ] ~~5a)

exp[i(k, +ku)zo] =exp[i(kPzo+02zl)] (25b)

exp)[i(kP–kl)zo] =exp[i(k~zo–olzl)] (25C)

exp[ i(kP –ku)zo] =exp[i(k,zo–ozzl )]. G!54

Next, we seek a particular solution for $1 in the form

+1= X L(x, zl)exp(iknzo). (26)
n=m, p,s

Substituting (26) into (15), we obtain

az~
— +n%’jn= –2L4~kmsin(mrx), forn=m, p,~r.
ax’

(27)

Multiplying both sides of (27) by sin(nm) and integrating

by parts from x= O to x = 1, we obtain

nr[ f.(0) --cos(n~)~.(1)] = –iA~kn , forn=m, p,s.

(28)

The constants A(O) and ~(l) are found from (16) and (17)

upon substitution of (26). Thus (28) yields the following

system of equations for the amplitudes of the interacting

modes:

Ah = ~(kz -k~kp)exp(-iulzl)AP (29)

A;= ~~k2-k.kp)exp(iulzl)A.
P

l%e parameters ol and q are called detuning parameters. = Cos(pt’r)cos(.w)
+ 2pkp

They measure the nearness of the resonances. In general,

they are different because they depend not only on the (kz -kpk,)exp(io2z1 +iO)A$ (30)
wavenumbers of the modes but also on the wall undula-

tions. The minus sign in (2 1)–(23) corresponds to the A:= ~ cos(pr)cos(sn)(k’ –kpk$)

interaction of modes traveling in the same direction
s

whereas the plus sign corresponds to the interaction of . exp( – iuzzl – iO)Ap. (31)
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We note from (29)–(31) that the pth mode is directly

coupled with the m th and s th modes, while the latter

modes are indirectly coupled via the pth mode.

Equations (29)– (31) admit solutions of

Am =a~exp[i(~–ul)zl]

AP =aPexp(iAzl)

A, =a,exp[i(A–u2)zl]

provided that

A3 –(U2 +U*)A2

the form

(32a)

(32b)

(32c)

[ 1(k2 -k~kp)2 J(k’ -k,k,)’ ~
+ u~u’ –

4k~kP ‘a 4kPk,

+ &(k’ -k.kP)2+ ~(k’ -kPk,)2=0.
MP ps

(33)

If all the roots of (33) are real, there is a passband and the

modes exchange their energies in accordance with energy

conservation [3]; otherwise, there is a stopband. The

significance of equation (33) is best discussed in connec-

tion with a numerical example.

V. DESIGN OF A MULTICHANNEL Nmow-Bm
FILTER

We consider a waveguide section whose length is large

compared with the plate separation d. For d= 3 cm, the

first-, second-, and third-dominant waveguide modes hav-

ing the wavenumbers kl, k2, and k3, are cutoff at the

frequencies 5, 10, and 15 GHz, respectively. In order to

determine transition curves separating stopbands from

passbands, we first determine the transition curves due to

the case of two-mode interactions. The equation determin-

ing the characteristic exponent A in this case can be

abstracted from the interaction equations (29)–(3 1) by
letting A,= 0 in one case then Am= O in

The result would be

[[

A=+013 U:+
(k2-k~kP)2

k.kp

the other case.

I/2

1}

(34a)

in the case of coupling of the modes p and m and

{[ 1}~2(k2-k k )2 “2
A=; .2* 0;+ ~kp s (34b)

ps

for the coupling of the modes p and s. It is clear from

these relations that when the modes are opposite then A is

complex for a range of values of UI and 02. This takes

place when kp = – km or – k,; that is, when an incident

mode is reflected by the corrugations. In the present

example there are two stopband interactions above each

of the cutoff frequencies as shown in Fig. 1. The transition

curve (solid line) occurring at a higher frequency in each

case is the one corresponding to the interaction due to the

larger wall wavenumber. The stopband lies to the left of

the transition curves in each case and is bounded at the

J

Fig. 1. Transition curves for two interacting modes. Shaded regions

00 I r I r

5 10 15

FREQUENCY f GHz

correspond to stopbands.

00 I I r 1
5 10 15

FREQUENCY f GHz

Fig. 2. Transition curves and stopbands for three interacting modes,

00I 1 r 1 r

5 10 15

FREQUENCY f GHz

Fig. 3. Stopbands for the first-order Bra= interaction.

cutoff frequency. Inspection of the detuning shows that

the interaction is strongest inside the stopband at frequen-

cies where al or U2= O to the left of the transition curve.

Results are shown for corrugation periods AIm8.66 cm on

the lower wall and AUS3. 1 cm on the upper wall.

As for the three mode interactions, the present choice of

kl and ka leads to two interactions out of the many

possibilities that may be anticipated when either kl or k2

or k~ acts as the intermediate mode wavenumber that is

directly coupled to the other two. The first of these is the

interaction of kz, – k2, and kl with kz being the inter-
mediate mode wavenumber above 10 GHz. The second

interaction is more important and occurs above 15 GHz

for an interaction of k,, k2, and k~ with kl being the

intermediate mode wavenumber. The stopbands of the

three-mode interaction are shown in Fig. 2 as the shaded

regions bounded by the cutoff frequency and the corre-
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Fig. 4. Power reflection coefficient in the stopband above 15 GHz.
Corrugation length 30 cm, 8=0.1, and a = 1.

spending transition curve. By combining the transition

curves of the two types of interaction, we obtain the

stopbands shown in Fig. 3.

The stopband above 15 GHz shows how the three-mode

interaction, enhanced by the multiperiodicity of the struc-

ture, produces an attenuation band that is wider than that

of the two-mode interaction. Moreover, there is a region

where these two types of interaction overlap. In this

region the attenuation is a maximum as seen in Fig. 4 [10]

for a filter section 30 cm in length. This figure shows the

behavior of the power reflection coefficient within the

stopband above 15 GHz. One can identify two transitions

in this diagram. The first corresponds to the transition

curve of the two-mode interaction via the upper wall

perturbation and carries with it a drop of about 35 per-

cent in attenuation. This drop is due to the fact that the

dispersion relation (33) always has a real root in the

stopband so that part of the energy is transferred without

attenuation. The second transition corresponds to the

transition curve of the three-mode interaction into the

passband.

IIY1

We also note that the bandwidth may be increased by

changing some of the parameters of the structure, such as

the strength of the perturbation on the upper wall relative

to that on the lower wall, or by decreasing the period of

the upper wall. As an example, if 8= 0.1 and a= 2 then

the stopband extends approximately up to 17.5 GHz as

compared with 16.8 GHz for a = 1.

In conclusion, one can say that the effect of multiple

periodicity is to produce a wide attenuation band that is

characterized by considerable attenuation in regions where

two-mode interactions coexist with three-mode interac-

tions. For these reasons multiperiodic waveguides seem to

be promising for narrow-band microwave filter appli-

cations.
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